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a b s t r a c t

The problem of fitting a parametric model in Tobit errors-in-variables regression models
is discussed in this paper. The proposed test is based on the supremum of the Khmaladze
type transformation of a certain partial sumprocess of calibrated residuals. This framework
covers the usual error-free Tobit model as a special case. The asymptotic null distribution
of this transformed process is shown to be the same as that of a time transformed standard
Brownian motion. Consistency against some fixed alternatives and asymptotic power
under some local nonparametric alternatives of this test are also discussed. Simulation
studies are conducted to assess the finite sample performance of the proposed test.
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1. Introduction

Tobit regression models are widely used in economics. They were first proposed by Tobin (1958) to describe censored
data as an extension of probit analysis. They assume that a latent variable Y ∗ is related to covariates X , in the fashion of
Y ∗

= m(X) + ε, where m(x) = E(Y ∗
|X = x) is the regression function and ε is the random error. But instead of observing

Y ∗ completely, one can actually only observe the value Y = max{Y ∗, y0}, where y0 is a known number. This is the so called
type I Tobit regression model. See Amemiya (1984) for an extensive introduction to this model. In practice, the predictor X
may also not be observed directly. Instead, a surrogate Z , which is related to X in an additive manner, is observed. That is,
one has the Tobit errors-in-variables regression model which can be written as

Y ∗
= m(X) + ε, Y = max{Y ∗, y0}, Z = X + u, (1.1)

where u is the measurement error. By assuming that m(x) has a parametric form m(x, β), where β ∈ Rr and the integer
r ≥ 1 is known, the existing work on this model mainly focuses on the estimation of the unknown parameter β . If X can be
observed directly or u = 0, under a normality assumption on ε, many estimation procedures have been proposed for the
parameter β . These include the probit maximum likelihood estimator, least squares estimator (including nonlinear least
squares, nonlinear weighted least squares), Heckman’s two-step estimator, and the Tobit maximum likelihood estimator
(see Heckman (1976, 1979) and Amemiya (1973, 1984) for a detailed description of these procedures). A robust estimator
of β was proposed by Powell (1984) based on the least absolute deviations. When X is measured with error, Wang (1998)
considered themodel (1.1) withm(X) = β0 +β ′

1X and proposed a two-stepmoment estimation procedure and amaximum
likelihood estimation procedure to estimate the unknown parameters.

The predetermined parametric form of the regression function is either based on some empirical evidence or is
selected for mathematical convenience. Misspecification of the regression function often results in inefficient or misleading
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conclusions. Therefore, it is necessary to develop some formal numerical tests to check the adequacy of the selected
regression functions. For a class of Tobit median regression models without measurement errors in which the median of
the random error is assumed to be 0, Wang (2007) proposed a simple nonparametric test for checking the nonlinearity of
the regression function. The literature is scant in developing lack-of-fit testing procedures for the Tobit mean regression
model with measurement errors in covariates. This paper tries to fill this void by proposing a testing procedure based on
the Khmaladze type transformation of a certain marked residual process. We show that the transformed marked residual
empirical process converges weakly to a time-transformed Brownianmotion in a uniformmetric under the null hypothesis.
Consequently, any test based on a continuous functional of this process is asymptotically distribution free, and can be
implemented at least for moderate to large samples without resorting to resampling methods.

The rest of the paper is organized as follows. The test statistic and its asymptotic null distribution are discussed under
quite broad assumptions in Section 2. Consistency and asymptotic power of the test against n−1/2-local nonparametric
alternatives are presented in Section 3. In Section 4, simulation studies are conducted to illustrate the finite sample
performance of the proposed test, and all proofs are postponed to Section 5.

Throughout this paper, B denotes the standard Brownian motion on [0, 1]. For any random variable V , FV and fV denote
its cumulative distribution and density functions, respectively. For any vector a, ‖a‖ will denote its Euclidean norm. For any
stochastic processWn(x),Wn(x) = up(1) indicates thatWn(x) converges to 0 in probability uniformly in x over the specified
range.

2. Test statistic

In model (1.1), we shall assume that X is one-dimensional, ε, u and X are independent with E(ε) = E(u) = 0, E(X) = µx,
E(ε2) = σ 2

ε , E(u2) = σ 2
u and Var(X) = σ 2

x . The density functions of X , ε, u are also assumed to be known. In some cases the
model may not be identifiable even the density functions of ε, u and X are known, and some additional conditions might be
needed to ensure identifiability. For example, Wang (1998) assumed the noise-to-signal ratio σ 2

u /σ 2
X is known in addition

to the normalities of u and X .
Let

Kj(x) =

∫
∞

x
wjfε(w)dw, j = 0, 1, 2, (2.1)

and g(z) = E(Y |Z = z). From (1.1), we obtain

g(z) =

∫
µ(x)fX |Z (x|z)dx, (2.2)

where µ(x) = y0 − [y0 − m(x)]K0(y0 − m(x)) + K1(y0 − m(x)) and fX |Z is the conditional density function of X given Z .
Therefore, one can consider a transformed regression model

Y = g(Z) + ξ, (2.3)

where ξ = Y − g(Z) is uncorrelated with Z and has mean 0 and conditional variance

τ 2(z) = E(ξ 2
|Z = z) =

∫
v(x)fX |Z (x|z)dx − g2(z) (2.4)

with

v(x) = m2(x)K0(y0 − m(x)) + 2m(x)K1(y0 − m(x)) + K2(y0 − m(x)) + y20Fε(y0 − m(x)).

We will denote θ = (β ′, µx, σ
2
ε , σ 2

u , σ 2
X )′ for the remainder of this paper. In some cases, the identifiability condition may

result in different specifications of θ . For example, in Wang (1998)’s set up, we may assume θ = (β ′, µx, σ
2
ε , σ 2

u )′, since
σ 2
u /σ 2

X is known. Therefore, to test H0 : m(x) = m(x, β) for some β ∈ Rr , one can test H0 : g(z) = g(z, θ) for some
θ ∈ Rr+1

×R3
+
orRr+1

×R2
+
in the transformedmodel (2.3), where g(z, θ) is the same as g(z) in (2.2)withm(x) replacedwith

m(x, β). For two functions m1(x) and m2(x), with corresponding g(z) by g1(z) and g2(z), one can easily see m1(x) = m2(x)
for all x implies g1(z) = g2(z) for all z. However if g1(z) = g2(z) for all z, one may not have m1(x) = m2(x) for all x. If
the conditional density function fX |Z (x|z), with z as a parameter, is a complete family, and Fε(x) is strictly increasing, then
g1(z) = g2(z) for all z indeed implies m1(x) = m2(x) for all x.

There are many lack-of-fit test procedures in the literature that check the adequacy of the parametric regression
functions. See Hart (1997) for an extensive discussion of this topic. One of these test procedures based on the following
cumulative marked residual process

Tn(z) =
1

√
n

n−
i=1

Yi − g(Zi, θ)

τ (Zi, θ)
I(Zi ≤ z)

where {(Zi, Yi), i = 1, . . . , n} is a sample from the model (1.1), has been receiving much attention in recent years. τ(z, θ)
is the same as τ(z) in (2.4) withm(x) being replaced withm(x, β). If all the parameters in model (1.1) are known under the
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null hypothesis, one can show that Tn(z) H⇒ B◦FZ (z) in D[−∞, ∞] and uniformmetric. Therefore, if FZ and all parameters
are known, any reasonable continuous functional of Tn(z) might be used to test the hypothesis. For example, one can reject
H0 whenever supz∈R |Tn(z)/

√
FZ (z)| exceeds a certain critical value obtained from the distribution of sup0≤t≤1 |B(t)|. More

about this test statistic can be found in Stute et al. (1998) (STZ).
Among the regularity conditions to ensure that Tn(z) H⇒ B ◦ FZ (z) in D[−∞, ∞] and uniform metric, a commonly

adopted one is to assume that the standard deviation function τ(z, θ) is uniformly bounded below from zero for all z. This
technical condition keeps the exposition relatively transparent. However, this condition is often violated in real applications.
As an illustration, let u = 0, α = 0, β = 1,y0 = 0, and ε ∼ N(0, 1), then

τ(z) = z2Φ(z) + zφ(z) + Φ(z) − [zΦ(z) + φ(z)]2.

Although for any z < ∞, τ(z) > 0, it is not bounded below from 0. But if we restrict all z’s such that z ≥ c for some known
constant c , then τ(z) will be bounded below from 0. Usually τ(z) vanishes at the boundary points in its support, thus we
may consider the following modified version of Tn(z),

Tn(z) =
1

√
n

n−
i=1

Yi − g(Zi, θ)

τ (Zi, θ)
I(c ≤ Zi ≤ z).

If θ is known, then we can prove the following lemma

Lemma 2.1. Suppose E[m2(X, θ)] + E(ε2) < ∞ and FZ (z) is continuous. Under the null hypothesis,Tn(z) is tight over [c, ∞].
Moreover Tn(z) H⇒ B ◦ (FZ (z) − FZ (c)) over [c, ∞] and in uniform metric.

If θ is unknown, one may replace it with some consistent estimator θ̂n. Denote the resulting process by T̂n(z). One can
show that the limiting process of T̂n(z) will not be distribution free. In fact, if the estimator θ̂n is

√
n-consistent, then under

some regularity conditions, the limiting process is the sum of a Brownian motion and a Gaussian process with mean 0.
Therefore, the limiting process is a Gaussian process with mean 0, but the covariance matrix has a complicated form which
depends on the CDF of Z , the derivative of g with respect to θ , and the conditional variance τ 2(z, θ). As a consequence, it is
hard to determine the critical values used for testing. The same phenomena occur in the lack-of-fit test in classical regression
models and measurement error models, see STZ, Koul and Song (2008) and the references therein.

To construct a distribution-free test statistic, STZ, Koul and Song (2008) applied the so-called Khmaladze type
transformation on the test statistics. This transformation was first considered by Khmaladze (1981, 1988), and soon became
a powerful tool for constructing distribution-free test statistics. Suppose that a stochastic process R(z) has the same
distribution as the sum of a Brownianmotion B(z), and a Gaussian process U(z). The Khmaladze type transformation of R(z)
is a linear transformation L of R, such that LR(z) = L(B(z)) + L(U(z)) = B(z) in distribution. For more about the Khmaladze
type transformation, see Khmaladze (1981, 1988), STZ, Khmaladze and Koul (2004), Koul (2006) and the references therein.
In this paper, we shall extend this method to the current setup. In particular, the Khmaladze type transformation of T̂n(z)
takes the form

Wn(z) =
1

√
n

n−
i=1

êiI(c ≤ Zi ≤ z) −
1

√
n

n−
i=1

êi


1
n

n−
j=1

l̂′(Zj)M̂−1
j I(c ≤ Zj ≤ Zi ∧ z)


l̂(Zi),

where

êi =
Yi − g(Zi, θ̂n)

τ (Zi, θ̂n)
, l̂(Zi) =

ġ(Zi, θ̂n)

τ (Zi, θ̂n)
, M̂j =

1
n

n−
k=1

l̂(Zk)l̂′(Zk)I(Zk ≥ Zj ≥ c)

and θ̂n is any
√
n-consistent estimator of θ0. In the following, we shall use ei, l(Zi), and Mj to denote êi, l̂(Zi) and M̂j with

θ̂n replaced with the true parameter θ0. Under the assumption that ε, X and u are independently and normally distributed,
Wang (1998) discussed two methods of estimating the unknown parameters, two-step moment estimation and maximum
likelihood estimation procedures. Both procedures provide

√
n-consistent estimators for θ . To date, there is no thorough

discussion onmodel (1.1) for the estimationproblemwhen the randomcomponents followother distributions. This deserves
an independent study. In the following discussion, we assume that there exist

√
n-consistent estimators for all unknown

parameters in the model (1.1).
To derive the asymptotic distribution of Wn(z), the assumptions below are needed. Let θ0 be the value of the parameter

under the null hypothesis, ġ(z, θ) and τ̇ (z, θ) be the derivatives of g(z, θ) and τ(z, θ) with respect to θ , respectively.

(g1) For every z, g(z, θ) is differentiable with respect to θ and Eg2(Z, θ0) + E‖ġ(Z, θ0)‖
2 < ∞. For any

√
n-consistent

estimator θ̂n of θ0,

max
1≤i≤n

|g(Zi, θ̂n) − g(Zi, θ0) − (θ̂n − θ0)
′ġ(Zi, θ0)| = op(1/

√
n).
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(g2) For every z, there exists a square matrix g̈(z; θ0), having finite expectation and a nonnegative function k(z; θ0) with
Ek(Z, θ0) < ∞ satisfying the following: ∀ δ > 0, ∃ζ > 0 such that ‖θ − θ0‖ ≤ ζ implies

‖ġ(z; θ) − ġ(z; θ0) − g̈(z; θ0)(θ − θ0)‖ ≤ δk(z; θ0)‖θ − θ0‖, ∀ z.

(v1) τ 2(z, θ0) is bounded below from 0 over [c, ∞), where c is a known real number.
(v2) For every z, τ(z, θ) is differentiable with respect to θ with E‖τ̇ (Z, θ0)‖

2 < ∞, and for all Zi’s such that Zi ≥ c ,

max
1≤i≤n

|τ 2(Zi, θ̂n) − τ 2(Zi, θ0) − 2(θ̂n − θ0)
′τ(Zi, θ0)τ̇ (Zi, θ0)| = op(1/

√
n).

(M) For all c ≤ z < ∞, Mz = El(Z)l′(Z)I(Z ≥ z) > 0.

Conditions (g1), (g2), (v1) and (v2) require a certain degree of smoothness on g and τ 2 as functions of θ . (v1) is not necessary
in the case of known θ , and one does not need to assume the process to be defined on [c, ∞] either. All we need is that the
variance function τ 2(z, θ0) is positive everywhere. Note that g and τ 2 are defined through the functionsm, K and the density
functions of ε, X and u, so it might be more desirable to impose the regularity conditions directly on them. As a result, we
would expect a long list of regularity conditions,which seemsunnecessary. Condition (M) is a technical assumption to ensure
that certain matrices used in the martingale transformation are invertible. It might be possible to remove this condition in
some special scenarios, as in Khmaladze and Koul (2004)’s work on goodness-of-fit tests. However, for the general case, we
will keep condition (M). The necessity of (M) surely deserves a deep investigation in the future.

The following theorem gives the weak convergence result for the process Wn(z).

Theorem 2.1. Suppose (g1), (g2), (v1), (v2) and (M) hold. Then under H0, for every z0 < ∞, Wn(z) ⇒ B ◦ (FZ (z) − FZ (c)) in
D([c, z0]) and uniform metric.

Consequently, the test that rejectsH0 whenever supc≤z≤z0 |Wn(z)/

F̂Z (z0) − F̂Z (c)| > bα will be of asymptotic sizeα, where

bα is such that P(sup0≤u≤1 |B(u)| > bα) = α. As wementioned before, the restriction of theweak convergence of Wn(z) over
[c, z0] is a technical one. In some cases, one can always choose a sufficiently small value c such that there is no observation
eliminated from the left side. The choice of z0 introduces some subjectiveness into our test. In practice, our recommendation
is to choose a large z0 to cover the majority of Z range. For example, one can choose z0 to be the 95th or 99th percentile of
the empirical CDF F̂Z .

3. Consistency and local power

The ability to detect any deviations from the null hypothesis is referred as consistency. In this section, we show that
under some regularity conditions, the test based on Wn(z) is consistent for certain fixed alternatives, and has nontrivial
asymptotic power against a large class of n−1/2-local nonparametric alternatives.

3.1. Consistency

Let h(x) be a known real-valued function and h(x) ∉ {m(x, β) : β ∈ Rr
}. Consider the alternative Ha : m(x) = h(x),

for all x ∈ R. In the null case, we assume that the estimator θ̂n is
√
n-consistent. Would this estimator still be

√
n

consistent under the alternative hypothesis Ha? This question is of interest in its own right, and deserves further study. In
the classical regression setup, Jennrich (1969) and White (1981, 1982) showed that under some mild regularity conditions,
the nonlinear least squares estimator converges in probability and is asymptotically normal even in the presence of model
misspecification. In this section, we assume that

√
n(θ̂n − θa) = Op(1) under the alternative Ha for some θa ∈ Rr+1

× R3
+
.

The arguments in Jennrich (1969) and White (1981, 1982) shed light on the justification of this assumption. In fact, if we
use the two-step moment estimation procedure, the asymptotic properties of µ̂x and σ̂ 2

u stay the same, because these two
estimators are not affected by the actual form of the regression function.

Now define new random variables

Y a∗
i = m(Xi, βa) + εi, Y a

i = max{Y a∗
i , y0} (3.1)

eai =
Y a
i − g(Zi, θa)
τ (Zi, θa)

, êai =
Y a
i − g(Zi, θ̂n)

τ (Zi, θ̂n)
, i = 1, 2, . . . , n.

Then Wn(z) can be written as the sum of the following two terms

Ŵ a
n (z) =

1
√
n

n−
i=1

êai

[
I(c ≤ Zi ≤ z) −

∫
c≤x≤z

l̂′(x)M−1
x I(Zi ≥ x)dF̂Z (x)l̂(Zi)

]
,

R̂a
n(z) =

1
√
n

n−
i=1

Yi − Y a
i

τ(Zi, θ̂n)

[
I(c ≤ Zi ≤ z) −

∫
c≤x≤z

l̂′(x)M−1
x I(Zi ≥ x)dF̂Z (x)l̂(Zi)

]
.
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Let

Q (x, ε) = h(x) − m(x, θa) + |h(x) + ε − y0| − |m(x, θa) + ε − y0|,

d1(z) = E
Q (X, ε)

2τ(Z, θa)
I(c ≤ Z ≤ z), (3.2)

ρ(z) = E
Q (X, ε)

2τ(Z, θa)
l(Z, θa)I(c ≤ Z ≤ z), (3.3)

d2(z) = El′(Z, θa)M−1
Z ρ(Z)I(c ≤ Z ≤ z). (3.4)

Then we have the following result:

Theorem 3.1. Suppose all the conditions in Theorem 2.1 hold with θ0 replaced by θa and d(z0) = supz≤z0 |d1(z) − d2(z)| > 0.

Then for any 0 < α < 1, the test that rejects H0 whenever supc≤z≤z0 |Wn(z)/

F̂Z (z0) − F̂z(c)| > bα is consistent.

One can replace the Q function in (3.2) and (3.3) with E(Q (X, ε)|Z) which has the complicated form E(Q (X, ε)|Z) =
q(x)f (x|z)dxwith

q(x) = [h(x) − m(x, θa)]K0(y0 − h(x) ∧ m(x, θa)) + [2y0 − h(x) − m(x, βa)][K0(y0 − m(x, βa)) − K0(y0 − h(x))]
+ 2[K1(y0 − h(x)) − K1(y0 − m(x, βa))],

where K0(x), K1(x) are defined in (2.1).

3.2. Local power

Sometimes it is desirable to investigate the performance of a test statistic at local alternatives, since consistency tells
nothing about the powerwhen the sample size is relatively small. Let δ(x) be ameasurable function such that E(δ2(X)) < ∞.
Consider the following sequence of local alternativesHLoc : m(x) = m(x, β0)+δ(x)/

√
n. We shall assume that the estimator

θ̂n satisfies
√
n(θ̂n − θ0) = Op(1). As in the fixed alternative case, we will not justify this assumption here.

By introducing the notation

Y L∗
i = m(Xi, β0) + εi, Y L

i = max{Y L∗
i , y0} (3.5)

eLi =
Y L
i − g(Zi, θ0)
τ (Zi, θ0)

, êLi =
Y L
i − g(Zi, θ̂n)

τ (Zi, θ̂n)
, i = 1, 2, . . . , n.

Wn(z) can be written as the sum of the following two terms

Ŵ L
n(z) =

1
√
n

n−
i=1

êLi

[
I(c ≤ Zi ≤ z) −

∫
c≤x≤z

l̂′(x)M−1
x I(Zi ≥ x)dF̂Z (x)l̂(Zi)

]
,

R̂L
n(z) =

1
√
n

n−
i=1

Yi − Y L
i

τ(Zi, θ̂n)

[
I(c ≤ Zi ≤ z) −

∫
c≤x≤z

l̂′(x)M−1
x I(Zi ≥ x)dF̂Z (x)l̂(Zi)

]
.

Define

dL1(z) = E
δ(X)K0(y0 − m(X, θ0))

τ (Z, θ0)
I(c ≤ Z ≤ z), (3.6)

ρ(z) = E
δ(X)K0(y0 − m(X, θ0))l(Z, θ0)

τ (Z, θ0)
I(Z ≥ z ≥ c), (3.7)

dL2(z) = El′(Z, θ0)M−1
Z ρ(Z)I(c ≤ Z ≤ z). (3.8)

The power of the test against HLoc can be readily obtained from the following theorem:

Theorem 3.2. Suppose all the conditions in Theorem 2.1 hold. Then under HLoc, Wn(z) H⇒ B ◦ FZ (z) + dL1(z) − dL2(z) weakly in
D[c, z0] and in uniform metric.

4. Simulation study

To explore the finite sample performance of the proposed test, we carried out a simulation study. We shall assume all
the random components follow normal distributions. In this case, the regression function g(z, θ) and the variance function
τ 2(z, θ) have explicit expressions.
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The data are generated from the regression function m(x) = β0 + β1x + δx2 with δ = 0, 0.1, 0.3 and y0 = 0. The
regression function under the null hypothesis corresponds to δ = 0, which will be used to check the finite sample levels of
the proposed test. The regression functions with δ = 0.1, 0.3 will serve as alternative models from which the finite sample
powers will be investigated. ε ∼ N(0, σ 2

ε ), X ∼ N(µx, σ
2
x ), u ∼ N(0, σ 2

u ). By the independence of ε, X and u, one can show
that

ε − β1u|Z = z ∼ N

−qβ1(z − µx), σ

2
ε + pβ2

1σ
2
u


,

where p = σ 2
x /(σ 2

x + σ 2
u ). For the sake of identifiability, we shall assume p is known. If we denote β̃0 = β0 + qβ1µx,

β̃1 = pβ1, and ξ = ε − β1u + qβ1(Z − µx), then the model (1.1) reduces to the following Tobit regression model without
measurement error

Y ∗

i = β̃0 + β̃1Zi + ξi, Yi = max{Y ∗

i , 0},

and ξi ∼ N(0, σ 2
ε + pβ2

1σ
2
u ). Let σ 2

= σ 2
ε + pβ2

1σ
2
u , α = β̃0/σ

2, β = β̃1/σ
2, and θ = (α, β, σ ). One can show that

g(z, θ) = σ(α + βz)Φ(α + βz) + σφ(α + βz) and

τ 2(z, θ) = σ 2(α + βz)2Φ(α + βz) + σ 2(α + βz)φ(α + βz) + σ 2Φ(α + βz) − g2(z, θ).

Differentiating g(z, θ) with respect to α, β , and σ , we obtain

∂g(z, θ)

∂α
= σΦ(α + βz),

∂g(z, θ)

∂β
= σ zΦ(α + βz),

and
∂g(z, θ)

∂σ
= (α + βz)Φ(α + βz) + φ(α + βz).

We used the two-step moment estimation procedure inWang (1998) to estimate all the unknown parameters. Since all the
estimators are

√
n-consistent and asymptotically normal, α, β and σ are continuous functions of α, β , µx, σ 2

ε and σ 2
u , so the

estimators α̂, β̂ and σ̂ are also
√
n-consistent and asymptotically normal.

To generate the sample from the model, we used the same setup as in Wang (1998) in which β0 = −6, β1 = 0.6,
σε = σu = 18, µx = 20 and σx = 180. Thus the true noise-to-signal ratio is σu/σx = 0.1. The sample sizes are chosen to
be n = 100, 200, 300 and 500. The cutoff point x0 is chosen to be the 95th percentile of the sample. The nominal level was
chosen to be 0.05. In each scenario, the test procedure was repeated 1000 times, and the empirical levels and powers were
evaluated by

#


sup
c≤z≤z0

|Wn(z)|/

0.95 − F̂Z (c) > 2.24241

 
1000,

where 2.24241 is such that P(sup0≤u≤1 |B(u)| > 2.24241) = 0.05. We selected c small enough so that F̂Z (c) = 0, therefore,
the restriction of z ≥ c is same as the restriction z > −∞ on the test statistic. The following table shows the simulation
results.

Model 100 200 300 500

δ = 0.0 0.060 0.059 0.051 0.053
δ = 0.1 0.825 0.975 0.996 1.000
δ = 0.3 0.928 0.996 1.000 1.000

When the sample size is small or moderate, the empirical level is slightly larger than the nominal level 0.05, but becomes
stable around 0.05 when the sample size is larger. The empirical power is very satisfying.

5. Proofs

To prove Lemma 2.1, we shall need the following result.

Lemma 5.1. Suppose U and V are random variables with E(U|V ) = 0, E(U2) < ∞. Let σ 2(v) = E(U2
|V = v), and (Ui, Vi),

1 ≤ i ≤ n be i.i.d. copies of (U, V ), c is a real constant, and

Sn(v) =
1

√
n

n−
i=1

Ui

σ(Vi)
I(c ≤ Vi ≤ v), v ∈ [c, ∞].

Assume FV (v) to be continuous. Then,

Sn(v) ⇒ B ◦ (FV (v) − FV (c)), in D([c, ∞]) and uniform metric.
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Proof. We can show that all finite dimensional distributions converge weakly to the right limit by using the CLT and the
Cramér–Wald device.

To show the tightness of the Sn-process over [c, ∞], note that for any c ≤ v1 ≤ v ≤ v2,

E[Sn(v2) − Sn(v)]2[Sn(v) − Sn(v1)]
2

= [FV (v2) − FV (v)][FV (v) − FV (v1)] ≤ [FV (v2) − FV (v1)]
2.

This bound, combined with Theorem 15.6 of Billingsley (1968), implies that Sn(v) is tight in uniform metric on [c, ∞]. �

Proof of Lemma 2.1. The result is a simple consequence of Lemma 5.1 applied to U = (Y − g(Z, θ))/τ(Z, θ), σ(V ) = 1
and V = Z . �

To state the next lemma, let U be a continuous r.v. with d.f. G. Let ℓ(u) be a vector of q functions with E‖ℓ(U)‖2 < ∞.
Assume that the matrix Cu := Eℓ(U)ℓ′(U)I(U ≥ u) is positive definite for all u ≥ c. For a real valued function
γ ∈ L2([c, ∞),G) define the transforms

Tγ (u) :=

∫
c≤y≤u

γ (y)ℓ′(y)C−1
y dG(y) ℓ(u), Kγ (u) := γ (u) − Tγ (u).

The following lemma, together its proof, is similar to the one from Proposition 4.1 of Khmaladze and Koul (2004) and
Lemma 9.1 of Koul (2006), which in turn has its origin in Khmaladze (1988). For the sake of brevity, the proof is omitted
here.

Lemma 5.2. Under the above set up,

EKγ (U)ℓ′(U) = 0, ∀ γ ∈ L2([c, ∞),G)

EKγ1(U)Kγ2(U) = Eγ1(U)γ2(U), ∀ γ1, γ2 ∈ L2([c, ∞),G).

Proof of Theorem 2.1. Denote the first term in Wn(z) by Wn1(z), and the second term by Wn2(z). Let ∆n(Zi) = τ(Zi, θ0)/
τ(Zi, θ̂n) − 1, and ei = (Yi − g(Zi, θ0))/τ(Zi, θ0). Then Wn1(z) can be written as the sum of four terms:

Wn11(z) =
1

√
n

n−
i=1

eiI(c ≤ Zi ≤ z),

Wn12(z) =
1

√
n

n−
i=1

ei∆n(Zi)I(c ≤ Zi ≤ z),

Wn13(z) =
1

√
n

n−
i=1

g(Zi, θ0) − g(Zi, θ̂n)
τ (Zi, θ0)

I(c ≤ Zi ≤ z),

Wn14(z) =
1

√
n

n−
i=1

g(Zi, θ0) − g(Zi, θ̂n)
τ (Zi, θ0)

∆n(Zi)I(c ≤ Zi ≤ z).

By Lemma 5.1, Wn11(z) H⇒ B ◦ (FZ (z) − FZ (c)) on D[c, ∞] in uniform metric. After some algebra, we can rewrite Wn12 as
the sum of

1
√
n

n−
i=1

ei[τ 2(Zi, θ0) − τ 2(Zi, θ̂n)]
2τ 2(Zi, θ0)

I(c ≤ Zi ≤ z), (5.1)

and

1
√
n

n−
i=1

ei
τ 2(Zi, θ0) − τ 2(Zi, θ̂n)

τ (Zi, θ0)
Dn(Zi)I(c ≤ Zi ≤ z), (5.2)

where

Dn(Zi) =
τ(Zi, θ0)

τ (Zi, θ̂n)(τ (Zi, θ0) + τ(Zi, θ̂n))
−

1
2τ(Zi, θ0)

.

By condition (v2), (5.1) can be further written as

−
√
n(θ̂n − θ0)

′
1
n

n−
i=1

eiτ̇ (Zi, θ0)
τ (Zi, θ0)

I(c ≤ Zi ≤ z) + up(1).

In view of (v1), (v2), a Glivenko–Cantelli argument implies that

1
n

n−
i=1

eiτ̇ (Zi, θ0)
τ (Zi, θ0)

I(c ≤ Zi ≤ z) = up(1).
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Then, by the
√
n-consistency of θ̂n, we can show that (5.1) has the order of up(1). Note that (5.2), by (v2), is bounded above

by

sup
1≤i≤n

|Dn(Zi)| ·
√
n‖θ̂n − θ0‖ ·

2
n

n−
i=1

|ei|‖τ̇ (Zi, θ0)‖.

From conditions (v1) and (v2), one can show that sup1≤i≤n |Dn(Zi)| = op(1). This, together with E‖τ̇ (Z, θ0)‖
2 < ∞ by (v2),

and
√
n-consistency of θ̂n, implies that (5.2) is up(1). Therefore, Wn12(z) = up(1). It follows from (g2) thatWn13(z) = −

√
n(θ̂n − θ0)

′El(Z)I(c ≤ Z ≤ z) + up(1).

Note that (v1), (v2) also imply sup1≤i≤n |∆n(Zi)| = op(1), then from (v1), one can also show that Wn14(z) = up(1). Hence,
we obtainWn1(z) = Wn11(z) −

√
n(θ̂n − θ0)

′El(Z)I(c ≤ Z ≤ z) + up(1). (5.3)

Now, let’s consider the term Wn2(z). Let

Un(z) =
1

√
n

n−
i=1

êi l̂(Zi)I(Zi ≥ z ≥ c), Un(z) =
1

√
n

n−
i=1

eil(Zi)I(Zi ≥ z ≥ c),

then Wn2(z) =

c≤x≤z l̂

′(x)M̂−1
x

Un(x)dF̂Z (x). Recall the notation ∆n(Zi), one can rewrite Un(z) as the sum of the following
eight terms

Un1(z) =
1

√
n

n−
i=1

ġ(Zi, θ̂n) − ġ(Zi, θ0)
τ (Zi, θ0)

ei∆n(Zi)I(Zi ≥ z ≥ c),

Un2(z) =
1

√
n

n−
i=1

l(Zi)ei∆n(Zi)I(Zi ≥ z ≥ c),

Un3(z) = −
1

√
n

n−
i=1

(g(Zi, θ̂n) − g(Zi, θ0))(ġ(Zi, θ̂n) − ġ(Zi, θ0))
τ 2(Zi, θ0)

∆n(Zi)I(Zi ≥ z ≥ c),

Un4(z) = −
1

√
n

n−
i=1

(g(Zi, θ̂n) − g(Zi, θ0))ġ(Zi, θ0)
τ 2(Zi, θ0)

∆n(Zi)I(Zi ≥ z ≥ c),

Un5(z) =
1

√
n

n−
i=1

ġ(Zi, θ̂n) − ġ(Zi, θ0)
τ (Zi, θ0)

eiI(Zi ≥ z ≥ c),

Un6(z) =
1

√
n

n−
i=1

l(Zi)eiI(Zi ≥ z ≥ c),

Un7(z) = −
1

√
n

n−
i=1

(g(Zi, θ̂n) − g(Zi, θ0))(ġ(Zi, θ̂n) − ġ(Zi, θ0))
τ 2(Zi, θ0)

I(Zi ≥ z ≥ c),

Un8(z) = −
1

√
n

n−
i=1

(g(Zi, θ̂n) − g(Zi, θ0))ġ(Zi, θ0)
τ 2(Zi, θ0)

I(Zi ≥ z ≥ c).

It can be shown that all Unj(z) = up(1) except for j = 6, 8 by conditions (g1), (g2), (v1) and (v2). Note that Un6(z) is Un(z),
from condition (g2), we can show that

Un8(z) = −
1
n

n−
i=1

l(Zi)l′(Zi)I(Zi ≥ z ≥ c)
√
n(θ̂n − θ0) + up(1) = −Mz

√
n(θ̂n − θ0) + up(1).

In fact, the law of large numbers implies the pointwise convergence, and a Glivenko–Cantelli type argument gives the
uniformity. Hence

sup
z∈[c,∞]

‖Un(z) − Un(z) + Mz
√
n(θ̂n − θ0)‖ = op(1). (5.4)

Similarly, one can show that supz∈[c,∞] ‖M̂z − Mz‖ = op(1). Since Mz > 0 for all z ≥ c , so for any z0 < ∞, we have
supz∈[c,z0] |M̂

−1
z − M−1

z | = op(1). Therefore, for any z ∈ [c, z0], Wn2(z) equals
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c≤x≤z

l′(x)M−1
x Un(x)dFZ (x) +

∫
c≤x≤z

l′(x)M−1
x [Un(x) − Un(x)]dFZ (x) + up(1).

By Lemma 6.6.4 in Koul (2002), the first term is

c≤x≤z l

′(x)M−1
x Un(x)dFZ (x) + up(1). The second term, from (5.4), can be

written as −El′(Z)I(c ≤ Z ≤ z)
√
n(θ̂n − θ0) + up(1). Therefore, for all z such that c ≤ z ≤ z0,Wn2(z) −

∫
c≤x≤z

l′(x)M−1
x Un(x)dFZ (x) + El′(Z)I(c ≤ Z ≤ z)

√
n(θ̂n − θ0)

 = up(1),

which, togetherwith (5.3), implies Wn(z) = Wn11(z)−

c≤x≤z l

′(x)M−1
x Un(x)dFZ (x)+up(1). The desired result in Theorem2.1

can be obtained by applying Lemma 5.2 with γ (u) = I(c ≤ u ≤ z),U = Z , G = FZ , l(Z) = ġ(Z, θ0)/τ(Z, θ0) and C = M . �

Proof of Theorem 3.1. From the assumption that
√
n(θ̂n − θa) = Op(1) under the alternative hypothesis, one can obtainW a

n (z) H⇒ B ◦ (FZ (z0) − FZ (c)) using the similar arguments as in showing Wn(z) H⇒ B ◦ (FZ (z0) − FZ (c)) in the proof of
Theorem 2.1.

Write Ra
n(z) as R

a
n1(z) − Ra

n2(z), where

Ra
n1(z) =

1
√
n

n−
i=1

Yi − Y a
i

τ(Zi, θ̂n)
I(c ≤ Zi ≤ z),

Ra
n2(z) =

1
√
n

n−
i=1

Yi − Y a
i

τ(Zi, θ̂n)

∫
c≤x≤z

l̂′(x)M−1
x I(Zi ≥ x)dF̂Z (x)l̂(Zi).

Based on the elementary equality max{a, b} = (a + b + |a − b|)/2,

n−1/2Ra
n1(z) =

1
n

n−
i=1

(Y ∗

i − Y ∗a
i ) + (|Y ∗

i − y0| − |Y ∗a
i − y0|)

2τ(Zi, θ̂n)
I(c ≤ Zi ≤ z).

Note that Y ∗

i − Y ∗a
i = h(Xi) − m(Xi, θa), |Y ∗

i | − |Y ∗a
i | = |h(Xi) + εi − y0| − |m(Xi, θa) + εi − y0|, we have n−1/2Ra

n1(z) =

d1(z) + up(1), where d1(z) is defined in (3.2).
Now define

Vn(z) =
1
n

n−
i=1

Yi − Y a
i

τ(Zi, θ̂n)
l̂(Zi)I(Zi ≥ z),

then n−1/2Ra
n2(z) =


c≤x≤z l̂(x)M−1

x
Vn(x)dF̂Z (x). From the

√
n-consistency of θ̂n, and a Glivenko–Cantelli type argument,

one can show that Vn(z) = ρ(z) + up(1), where ρ(z) is given in (3.3). Then a routine argument leads to n−1/2Ra
n2(z) =

d2(z) + up(1), where d2(z) is given in (3.4). Thus

sup
c≤z≤z0

|n−1/2Ra
n(z) − [d1(z) − d2(z)]| = op(1). (5.5)

Finally, the consistency of our test is derived by combining (5.5), the inequality

sup
c≤z≤z0

|Wn(z)| ≥
√
n sup

c≤z≤z0
|n−1/2Ra

n(z)| − sup
c≤z≤z0

|W a
n (z)|,

and the condition d(z0) = supc≤z≤z0 |d1(z) − d2(z)| > 0. �

Proof of Theorem 3.2. Using the similar method as in the null case, one can show that W L
n(z) H⇒ B ◦ (FZ (z0) − FZ (c)). To

deal with RL
n(z), we can rewrite it as RL

n1(z) − RL
n2(z), where

RL
n1(z) =

1
√
n

n−
i=1

Yi − Y L
i

τ(Zi, θ̂n)
I(c ≤ Zi ≤ z),

RL
n2(z) =

1
√
n

n−
i=1

Yi − Y L
i

τ(Zi, θ̂n)

∫
c≤x≤z

l̂′(x)M−1
x I(Zi ≥ x)dF̂Z (x)l̂(Zi).

Note that Yi − Y L
i is equal to

1
2
√
n


δ(Xi) + |

√
nm(Xi, θ0) + δ(Xi) + εi

√
n − y0

√
n| − |

√
nm(Xi, θ0) + εi

√
n − y0

√
n|


,
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so RL
n1(z) is the sum of the following two terms:

RL
n11(z) =

1
n

n−
i=1

δ(Xi)

2τ(Zi, θ̂n)
I(c ≤ Zi ≤ z),

RL
n12(x) =

1
n

n−
i=1

|
√
n[m(Xi, θ0) + εi − y0] + δ(Xi)| − |

√
n[m(Xi, θ0) + εi − y0]|

2τ(Zi, θ̂n)
I(c ≤ Zi ≤ z).

It is easy to see that

RL
n11(z) = E

δ(X)

2τ(Z, θ0)
I(c ≤ Z ≤ z) + up(1). (5.6)

One can show that RL
n12(z) equals

1
n

n−
i=1

|
√
n[m(Xi, θ0) + εi − y0] + δ(Xi)| − |

√
n[m(Xi, θ0) + εi − y0]|

2τ(Zi, θ0)
I(c ≤ Zi ≤ z) + up(1).

For convenience, denote the first term on the right hand side byRL
n12(z). Note that for all i,√

nm(Xi, θ0) + δ(Xi) + εi
√
n − y0

√
n| − |

√
nm(Xi, θ0) + εi

√
n − y0

√
n
 ≤ |δ(Xi)|. (5.7)

We can see that |RL
n12(z) −RL

n12(z)| is bounded above by

sup
1≤i≤n

 1

τ(Zi, θ̂n)
−

1
τ(Zi, θ0)

 ·
1
n

n−
i=1

|δ(Xi)|,

which is up(1) from the fact sup1≤i≤n |∆n(Zi)| = op(1). By (5.7), one can show that E[RL
n12(z) − ERL

n12(z)]
2

= u(1). HenceRL
n12(z) = ERL

n12(z) + up(1). By the Lebesgue dominated convergence theorem, we can show that

E

√nm(X, θ0) + δ(X) + ε
√
n − y0

√
n
 −

√nm(X, θ0) + ε
√
n − y0

√
n
 I(c ≤ Z ≤ z)

2τ(Z, θ0)

→ E
δ(X)

2τ(Z, θ0)
I(c ≤ Z ≤ z)[I(m(X, θ0) + ε > y0) − I(m(X, θ0) + ε < y0)]

as n → ∞. This, together with (5.6), implies RL
n1(x) = dL1(x) + up(1), where dL1(x) is given by (3.6).

Let

Vn(z) =
1

√
n

n−
i=1

Yi − Y L
i

τ(Zi, θ̂n)
l̂(Zi)I(Zi ≥ z).

Then RL
n2(z) =


c≤x≤z l̂(x)M−1

x
Vn(x)dFZ (x). From the

√
n-consistency of θ̂n, and a Glivenko–Cantelli type argument, it follows

thatVn(z) = ρ(z)+up(1), where ρ(z) is given in (3.7). Then a routine argument leads to n−1/2RL
n2(z) = dL2(z)+up(1), where

dL2(z) is given in (3.8). Therefore, we obtain Wn(z) = B ◦ (FZ (z) − FZ (c)) + dL1(z) − dL2(z) + up(1) which implies the desired
result in Theorem 3.2. �
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